Volume 41 Issue 2
Sep.  2022
Turn off MathJax
Article Contents
ZHOU Shi-qiang, ZHANG Jin-dong, Vanessa HULL, LIU Dian, ZHOU Teng-long, HUANG Jin-yan, ZHANG He-min. Effects of Herbivory by Ailuropoda melanoleuca and Grazing Livestock on Population Characteristics of Bashania faberi Clones[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(2): 50-59. doi: 10.12390/jbr2022059
Citation: ZHOU Shi-qiang, ZHANG Jin-dong, Vanessa HULL, LIU Dian, ZHOU Teng-long, HUANG Jin-yan, ZHANG He-min. Effects of Herbivory by Ailuropoda melanoleuca and Grazing Livestock on Population Characteristics of Bashania faberi Clones[J]. JOURNAL OF BAMBOO RESEARCH, 2022, 41(2): 50-59. doi: 10.12390/jbr2022059

Effects of Herbivory by Ailuropoda melanoleuca and Grazing Livestock on Population Characteristics of Bashania faberi Clones

doi: 10.12390/jbr2022059
  • Received Date: 2022-04-26
  • Population characteristics are the most intuitive and measurable biological indicators of plants and the functional responses of plants to external interferences and environmental fluctuations.By analyzing the population characteristics of Bashania faberi clones after feeding by the wild giant pandas (Ailuropoda melanoleuca) and grazing livestock,we can understand the impact intensity of the giant pandas and grazing livestock on the clonal population dynamics of Bashania faberi,and the response strategy of clonal populations of Bashania faberi to herbivory of different animals.Therefore,the clonal population characteristics of Bashania faberi in Wolong Area of the Giant Panda National Park after feeding by giant pandas and grazing livestock were determined by quadrat method,and compared with those in the control plots.The results showed that wild giant pandas and grazing livestock reduced the coverage of bamboo forest to 87.85% and 52.95% of the control,respectively.The impact intensity of grazing livestock was 1.66 times that of wild giant pandas.Feeding by grazing livestock hindered the germination,regeneration,growth and development of one-year-old bamboo.Compared with the control,the density of one-year-old bamboo decreased by 97.07%,the basal diameter decreased by 27.78%,and the plant height decreased by 87.93%.Grazing livestock had no significant impact on the basal diameters of bamboo culms of other ages or populations (P>0.05),but significantly reduced the heights of other bamboo culms (P<0.05).Feeding by wild giant pandas mainly affected the number of one-year-old bamboo,causing a decrease of density by 28.13%,and was conducive to maintaining the numbers of two-year-old and even older bamboo and the populations,as well as the basal diameters and the plant heights of bamboo ramets of all ages.Therefore,the diameter distribution of the bamboo populations in the plots for livestock grazing was similar to that in the control plots,which followed a normal distribution pattern with the majority being 3.1~6.0 mm and accounting for 82.21% of the total number.However,the height distribution was quite different,and the peak shifted to the lower end.The number of bamboo culms less than 60 cm in height accounted for 41.21%.The population structure (basal diameter and plant height) of bamboo in the plots for wild giant panda herbivory had a similar normal distribution like that in control plots.Most bamboo culms were 2.1~6.0 mm in basal diameter,accounting for 79.44% of the total number,and were 61~140 cm in plant height,accounting for 70.01%.Thus,livestock grazing has a much greater impact on the clonal populations of Bashania faberi than wild giant panda herbivory,and excessive feeding will lead to the degradation of Bashania faberi resource.Therefore,restricting the quantity of grazing livestock and their grazing area is an effective measure to protect the wild giant pandas and their habitats.
  • loading
  • [1]
    Mouillot D,Graham N A,Villēger S,et al. A functional approach reveals community responses to disturbances[J]. Trends in Ecology&Evolution,2013,28(3):167-177.
    [2]
    Joswig J S,Wirth C,Schuman M C,et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation[J]. Nature Ecology&Evolution,2022,6(1):36-50.
    [3]
    Dong N,Prentice I C,Wright I J,et al. Components of leaf-trait variation along environmental gradients[J]. New Phytologist,2020,228(1):82-94.
    [4]
    Liu C C,Li Y,Zhang J H,et al. Optimal community assembly related to leaf economic-hydraulic-anatomical traits[J]. Frontiers in Plant Science,2020,11:341.
    [5]
    Augusto L,Boča A. Tree functional traits,forest biomass,and tree species diversity interact with site properties to drive forest soil carbon[J]. Nature Communications,2022,13:1097.
    [6]
    Darabant A,Rai P B,Tenzin K,et al. Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory[J]. Forest Ecology and Management,2007,252:73-83.
    [7]
    Wang L,Delgado-Baquerizo M,Wang D,et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands[J]. PNAS,2019,116(13):6187-6192.
    [8]
    Merganič J,Russ R,Beranová J,et al. Assessment of the impact of deer on the diversity of young trees in forest ecosystems in selected localities of the Czech Republic[J]. Ekológia (Bratislava),2009,28(4):424-437.
    [9]
    Lama S,Shrestha S,Koju N P,et al. Assessment of the impacts of livestock grazing on endangered red panda (Ailurus fulgens) habitat in eastern Nepal[J]. Open Journal of Ecology,2020,10:97-110.
    [10]
    Bai Y F,Wu J G,Clark C M,et al. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient[J]. Journal of Applied Ecology,2012,49:1204-1215.
    [11]
    Rindfuss R R,Entwisle B,Walsh S J,et al. Land use change:complexity and comparisons[J]. Journal of Land Use Science,2008,3(1):1-10.
    [12]
    Steinfeld H,Gerber P,Wassenaar T,et al. Livestock's long shadow-environmental issues and options[R]. Rome:FAO,2006.
    [13]
    冉江洪,刘少英,王鸿加,等.小相岭大熊猫与放牧家畜的生境选择[J].生态学报,2003,23(11):2253-2259.
    [14]
    冉江洪,刘少英,王鸿加,等.放牧对冶勒自然保护区大熊猫生境的影响[J].兽类学报,2003,23(4):288-294.
    [15]
    冉江洪,刘少英,王鸿加,等.小相岭大熊猫栖息地干扰调查[J].兽类学报,2004,24(4):277-281.
    [16]
    康东伟,赵联军,宋国华.四川王朗国家级自然保护区大熊猫与家畜竞争关系[J].东北林业大学学报,2011,39(7):74-76.
    [17]
    罗莲莲,蒲丹,邱兰,等.放牧对野生大熊猫种群及栖息地的影响[J].贵州师范大学学报(自然科学版),2019,37(6):52-57.
    [18]
    Hull V,Zhang J D,Zhou S Q,et al. Impact of livestock on giant pandas and their habitat[J]. Journal for Nature Conservation,2014,22(3):256-264.
    [19]
    Li B V,Pimm S L,Li S,et al. Free-ranging livestock threaten the long-term survival of giant pandas[J]. Biological Conservation,2017,216:18-25.
    [20]
    Zhang J D,Hull V,Ouyang Z Y,et al. Divergent responses of sympatric species to livestock encroachment at fine spatiotemporal scales[J]. Biological Conservation,2017,209:119-129.
    [21]
    Wang X,Huang J Y,Connor T A,et al. Impact of livestock grazing on biodiversity and giant panda habitat[J]. Journal of Wildlife Management,2019,83(7):1592-1597.
    [22]
    国家林业和草原局.全国第四次大熊猫调查报告[M].北京:科学出版社,2021.
    [23]
    黄金燕,刘巅,张明春,等.放牧对卧龙大熊猫栖息地草本植物物种多样性与竹子生长影响[J].竹子学报,2017,36(2):57-64.
    [24]
    王晓,侯金,张晋东,等.同域分布的珍稀野生动物对放牧的行为响应策略[J].生态学报,2018,38(18):6484-6492.
    [25]
    周世强,Hull V,张晋东,等.野生大熊猫与放牧家畜的空间利用格局比较[J].兽类学报,2016,36(2):138-151.
    [26]
    周世强,张晋东,Hull V,等.野生大熊猫与放牧家畜的活动格局比较[J].生态学报,2019,39(3):1071-1081.
    [27]
    周世强,张晋东,Hull V,等.野生大熊猫与放牧家畜采食竹子行为的比较[J].应用与环境生物学报,2021,27(5):1203-1209.
    [28]
    周世强,黄金燕,张亚辉,等.野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群更新的影响[J].生态学报,2009,29(9):4804-4814.
    [29]
    周世强,黄金燕,张亚辉,等.野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群结构的影响[J].应用生态学报,2010,21(7):1709-1717.
    [30]
    周世强,黄金燕,张亚辉,等.野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群生物量的影响[J].应用与环境生物学报,2012,18(1):1-8.
    [31]
    王晓,张晋东.放牧对大熊猫影响的研究进展[J].四川动物,2019,38(6):714-720.
    [32]
    韩菡.放牧对保护区大熊猫保护的危害及应对措施[J].江西农业,2018(18):59-60.
    [33]
    Wang W,Franklin S B,Ouellette J R. Clonal regeneration of an arrow bamboo,Fargesia qinlingensis,following giant panda herbivory[J]. Plant Ecology,2007,192:97-106.
    [34]
    Zhang L Y,Gan X H,Hou Z Y,et al. Grazing by wild giant pandas does not affect the regeneration of Arundinaria spanostachya[J]. Journal of Forestry Research,2019,30:1513-1520.
    [35]
    王逸之,董文渊,Kouba A,等.大熊猫干扰下巴山木竹无性系种群形态可塑性研究[J].竹子研究汇刊,2013,32(1):5-8.
    [36]
    卧龙自然保护区管理局,南充师范学院生物系,四川省林业厅保护处.卧龙植被及资源植物[M].成都:四川科学技术出版社,1987.
    [37]
    四川省林业厅.四川的大熊猫四川省第四次大熊猫调查报告[M].成都:四川科学技术出版社,2015.
    [38]
    Qiao M J,Connor T,Shi X G,et al. Population genetics reveals high connectivity of giant panda populations across human disturbance features in key nature reserve[J]. Ecology and Evolution,2019,9:1809-1819.
    [39]
    Huang J,Li Y Z,Du L M,et al. Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca),with a focus on the applications of a novel microsatellite marker system[J]. BMC Genomics,2015,16:61.
    [40]
    张晋东,李玉杰,王玉君,等.野生大熊猫种群数量两种调查方法对比[J].应用与环境生物学报,2017,23(6):1142-1147.
    [41]
    刘巅,黄金燕,谢浩,等.汶川地震对卧龙自然保护区社区经济的影响[J].四川林业科技,2014,35(6):77-80.
    [42]
    胡锦矗,夏勒,潘文石,等.卧龙的大熊猫[M].成都:四川科学技术出版社,1985.
    [43]
    潘文石,吕植,朱小健,等.继续生存的机会[M].北京:北京大学出版社,2001.
    [44]
    叶卫平. Origin 9. 1科技绘图及数据分析[M].北京:机械工业出版社,2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (269) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return