Volume 39 Issue 4
Oct.  2021
Turn off MathJax
Article Contents
WANG Xian-ke, FANG Chang-hua, LIU Rong, ZHANG Shu-qin, CHEN Hong, FEI Ben-hua. The Longitudinal Tensile Properties of Bamboo Units with Different Scales[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(4): 14-24.
Citation: WANG Xian-ke, FANG Chang-hua, LIU Rong, ZHANG Shu-qin, CHEN Hong, FEI Ben-hua. The Longitudinal Tensile Properties of Bamboo Units with Different Scales[J]. JOURNAL OF BAMBOO RESEARCH, 2020, 39(4): 14-24.

The Longitudinal Tensile Properties of Bamboo Units with Different Scales

  • Received Date: 2020-10-03
    Available Online: 2021-10-16
  • Bamboo belongs to Bambusoideae, being multi-noded, hollow, and thick wall, etc. Bamboo has excellent mechanical properties, and is a biological composite with high strength, high toughness and high ductility. Bamboo is composed of fiber, parenchyma tissue and conductive tissue cells. The fiber cells play a bearing role, and the tensile strength of bamboo is mainly provided by fiber. The parenchyma cells transport and store nutrients and transfer loads. The transport tissue cells mainly transport nutrients, water and inorganic salts and play a stress supporting role. In this paper, the research results of longitudinal tensile properties of bamboo at different scales, i.e., macroscopic, tissue, cell and cell wall scale, were reviewed, and the characteristics and differences of mechanical properties at different scales, as well as the significance of engineering application, were analyzed. This may provide a reference for further study on the multi-scale tensile mechanical properties of bamboo.
  • loading
  • [1]
    Vorontsova M S, Clark L G, Dransfield J, et al. World Check List of Bamboos and Rattans:In Celebration of INBAR's 20th Anniversary[M]. Beijing, 2016.
    [2]
    江泽慧.世界竹藤[M]. 沈阳:辽宁科学技术出版社, 2002.
    [3]
    国家林业和草原局.中国森林资源报告(2014-2018)[M].北京:中国林业出版社,2019.
    [4]
    Cardarelli F. Materials handbook[M]. London:Springer, 2018.
    [5]
    Amada S, Untao S. Fracture properties of bamboo[J]. Composites Part B:Engineering, 2001, 32(5):451-459.
    [6]
    Yulong D, Liese W. On the nodal structure of bamboo[J]. Journal of Bamboo Research, 1995, 14:24-32.
    [7]
    Silva E C N, Walters M C, Paulino G H. Modeling bamboo as a functionally graded material:lessons for the analysis of affordable materials[J]. Journal of Materials Science,2006, 41(21):6991-7004.
    [8]
    Mandl S, Alam S. Dynamic mechanical analysis and morphological studies of glass/bamboo fiber reinforced unsaturated polyester resin-based hybrid composites[J]. Journal of Applied Polymer Science, 2011,125(1):382-387.
    [9]
    Xue H Y, Chen Q H, Lin J H. Preparation and characterization of bamboo fibers coated with urushiol-ferric and its composite with polypropylene[J]. Journal of Applied Polymer Science,2012,125(1):439-447.
    [10]
    GB/T 15780-1995, 竹材物理力学性质试验方法[S].
    [11]
    俞友明,方伟,林新春,等.苦竹竹材物理力学性质的研究[J].西南林学院学报,2005,25(3):64-68.
    [12]
    柳凌燕.不同年龄茶秆竹和橄榄竹竹材物理力学性质的比较研究[D]. 福州:福建农林大学,2018:1-28.
    [13]
    Awalluddin D, Ariffin M A M, Osman M H, et al. Mechanical properties of different bamboo species[C].MATEC Web of Conferences,2017, 138:01024.
    [14]
    杨喜,刘杏娥,杨淑敏,等.5种丛生竹材物理力学性质的比较[J].东北林业大学学报,2013,41(10):91-93

    +97.
    [15]
    Molari L, Mentrasti L, Fabiani M. Mechanical characterization of five species of Italian bamboo[C]. Structures. 2020, 24:59-72.
    [16]
    李霞镇.毛竹材力学及破坏特性研究[D].北京:中国林业科学研究院硕士论文,2009.
    [17]
    刘焕荣.竹子的断裂特性及断裂机制研究[D].北京:中国林业科学研究院博士论文集,2010:7-25.
    [18]
    黄艳辉.毛竹纤维细胞力学性质研究[D].北京:中国林业科学研究院,2010.
    [19]
    黄艳辉,费本华,余雁,等.毛竹纵向力学性质的梯度变化及断口特征[J].西北农林科技大学学报,2011,39(6):217-222.
    [20]
    虞华强,费本华,任海清,等.毛竹顺纹抗拉性质的变异及与气干密度的关系[J].林业科学,2006,42(3):501-509.
    [21]
    肖洒.楠竹杆件基本受力性能试验研究[D].重庆:重庆大学,2019.
    [22]
    郝际平,秦梦浩,田黎敏,等.毛竹顺纹方向力学性能的试验研究[J]. 西安建筑科技大学学报(自然科学版).2017,49(6):777-783.
    [23]
    Shao Z, Wang F. Fracture Mechanics of Plant Materials[M]. Beijing:Science Press, 2012.
    [24]
    江泽慧,邹惠渝,阮锡根,等.应用X射线衍射技术研究竹材超微结构I竹材纤丝角[J].林业科学,2000,37(3):122-125.
    [25]
    杨淑敏,江泽慧,任海青,等.毛竹材质生成过程中微纤丝角的变化[J].南京林业大学学报(自然科学版),2009,33(5):73-76.
    [26]
    Huang Y H, Fei B H. Comparison of the mechanical characteristics of fibers and cell walls from Moso bamboo and wood[J]. BioResources, 2017, 12(4):8230-8239.
    [27]
    刘杏娥,杨喜,杨淑敏,等.梁山慈竹微纤丝角的X射线衍射技术解析及对拉伸力学的影响[J].光谱学与光谱分析,2014,34(6):1698-1701.
    [28]
    陈琦,陈美玲,费本华.水分影响竹材力学性能研究现状[J].竹子学报,2018,37(2):84-89.
    [29]
    Xu Q, Harries K, Li X, et al. Mechanical properties of structural bamboo following immersion in water[J]. Engineering Structures,2014,81:230-239.
    [30]
    Chen G, Luo H, Yang H, et al. Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo[J]. Acta Biomaterialia, 2018(65):203-215.
    [31]
    祝明桥,张紫薇,王华,等.竹材力学性能及混凝土环境中影响[J]. 湖南科技大学学报,2020,35(3):50-56.
    [32]
    王汉坤.水分对毛竹细胞壁及宏观力学行为的影响机制[D]. 长沙:中南林业科技大学,2010.
    [33]
    於琼花,俞友明,金永明,等.雷竹人工林竹材物理力学性质[J].浙江林学院学报,2004,21(2):130-133.
    [34]
    包永洁,蒋身学,程大莉,等.热处理对竹材物理力学性能的影响[J].竹子研究汇刊,2009,28(4):50-53.
    [35]
    夏雨,牛帅红,李延军,等.常压高温热处理对红竹竹材物理力学性能的影响[J].浙江农林大学学报,2018,35(4):765-770.
    [36]
    刘海庆,吕莹.高温热处理对罗竹力学性能的影响[J].农机化研究,2020,42(7):191-196.
    [37]
    温太辉,周文伟.中国竹类维管束解剖形态的研究初报(之一)[J].竹子研究汇刊,1984,3(1):1-21.
    [38]
    温太辉,周文伟.中国竹类维管束解剖形态的研究初报(之二)[J].竹子研究汇刊,1985,4(1):28-43.
    [39]
    杨云芳,刘志坤.毛竹材抗拉弹性模量及抗拉强度[J].浙江林学院学报,1996,13(1):21-27.
    [40]
    Amada S, Ichikawa Y, Munekata T, et al. Fiber texture and mechanical graded structure of bamboo[J]. Composites Part B:Engineering, 1997, 28(1-2):13-20.
    [41]
    田根林,江泽慧,余雁.竹材韧性之源:两相复合材料结构及多级弱界面机制[C].第3届全国生物质材料科学与技术学术研讨会,2009.
    [42]
    叶民权.竹维管束抗张强度之评估[J].中华林业,1995, 9(1):29-37.
    [43]
    Shao Z P, Fang C H, Huang S X, et al. Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure[J]. Wood science and technology, 2010, 44(4):655-666.
    [44]
    尚莉莉,孙正军,郭伟峰.毛竹维管束的拉伸性能研究[J].林业机械与木工设备,2011,39(7):17-20.
    [45]
    Li H, Shen S. The mechanical properties of bamboo and vascular bundles[J]. Journal of Materials Research, 2011, 26(21):2749.
    [46]
    Li H B, Shen S P. Experimental investigation on mechanical behavior of Moso Bamboo vascular bundles[C]. Key Engineering Materials. 2011, 462:744-749.
    [47]
    尚莉莉.毛竹维管束的形态特征及拉伸力学性能研究[D].北京:中国林业科学研究院,2011.
    [48]
    周爱萍,黄东升,车慎思,等.竹材维管束分布及其抗拉力学性能[J].建筑材料学报,2012,15(5):730-734.
    [49]
    倪林,孙正军,张秀标,等.毛竹维管束面积与维管束拉伸性能的相关性[J].木材加工机械,2015,26(1):32-34.
    [50]
    Shang L L, Sun Z J, Liu X E, et al. A novel method for measuring mechanical properties of vascular bundles in moso bamboo[J]. Journal of Wood Science,2015,61(6).
    [51]
    黄盛霞,马丽娜,邵卓平,等.毛竹微观构造特征与力学性质关系的研究[J].安徽农业大学学报,2005,32(2):203-206.
    [52]
    André A. Fibres for strengthening of timber structures[M]. Lule tekniska universitet, 2006.
    [53]
    Bledzki A K, Gassan J. Composites reinforced with cellulose based fibres[J]. Progress in Polymer Science,1999,24(2).
    [54]
    安晓静.竹子的多尺度拉伸力学行为及其强韧机制[D].北京:中国林业科学研究院, 2013.
    [55]
    安晓静,王昊,李万菊,等.毛竹纤维鞘的拉伸力学性能[J].南京林业大学学报(自然科学版),2014,38(2):6-10.
    [56]
    Chen H, Cheng H, Wang G, et al. Tensile properties of bamboo in different sizes[J]. Journal of wood science, 2015, 61(6):552-561.
    [57]
    王新洲,袁朱润,黄雅茜,等.毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性[J/OL].复合材料学报:1-9[2020-11-24

    ].
    [58]
    黄慧,贺磊,余能富,等.竹龄对竹纤维束提取及性能的影响[J].南方林业科学,2017,45(1):56-59.
    [59]
    Wang F L, Shao Z P. Study on the variation law of bamboo fibers' tensile properties and the organization structure on the radial direction of bamboo stem[J]. Industrial Crops and Products, 2020, 152:112521.
    [60]
    Hu K L, Huang Y H, Fei B H,et al. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system[J]. Cellulose,2017,24(11).
    [61]
    王福利,王献轲,周佳硕,等.竹材薄壁组织拉伸性能及其变异规律的研究[J].北京林业大学学报, 2020,42(11):1-8.
    [62]
    Wang D, Lin L, Fu F. Fracture mechanisms of Moso bamboo (Phyllostachys pubescens) under longitudinal tensile loading[J]. Industrial Crops and Products, 2020, 153:112574.
    [63]
    余雁,王戈,费本华,等.植物短纤维专用力学性能测试仪的研制和开发[C].呼和浩特:第二届全国生物质材料科学与技术学术研讨会,2008:559-563.
    [64]
    黄艳辉,费本华,余雁,等.毛竹单根纤维的力学性质研究[J].中国造纸,2009,28(8):10-12.
    [65]
    Yu Y, Jiang Z H, Fei B H, et a1. An improved micro tensile technique for mechanical characterization of short plant fibers:a case study on bamboo fibers[J].Journal of Materials Science,2011,46(3) 739.746.
    [66]
    GB/T 35378-2017, 植物单根短纤维拉伸力学性能测试方法[S].
    [67]
    Wang G, Shi S Q, Wang J, et al. Tensile properties of four types of individual cellulosic fibers[J]. Wood and Fiber Science, 2011, 43(4):353-364.
    [68]
    田根林.竹纤维力学性能的主要影响因素研究[D]. 北京:中国林业科学研究院,2015.
    [69]
    陈红.竹纤维细胞壁结构特征研究[D].北京:中国林业科学研究院,2014.
    [70]
    安鑫.毛竹纤维细胞壁微纤丝取向与超微构造研究[D].北京:中国林业科学研究院,2016.
    [71]
    刘嵘,陈美玲,刘贤淼,等.树脂铸型法研究毛竹材细胞壁的纹孔特征[J].林业科学,2019,55(4):196-202.
    [72]
    Chen M, Dai C, Liu R, et al. Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers[J]. Industrial Crops and Products, 2020(155):112787.
    [73]
    陈红.单根竹纤维性能与制取方法关系的研究[D].北京:中国林业科学研究院,2011.
    [74]
    Chen H, Yu Y, Zhong T, et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers[J]. Cellulose, 2017, 24(1):333-347.
    [75]
    Adel Salih A, Zulkifli R, Azhari C H. Tensile properties and microstructure of single-cellulosic bamboo fiber strips after alkali treatment[J]. Fibers, 2020, 8(5):26.
    [76]
    Zhang K, Wang F, Liang W, et al. Thermal and mechanical properties of bamboo fiber reinforced epoxy composites[J]. Polymers, 2018, 10(6):608.
    [77]
    Manalo A C, Wani E, Zukarnain N A, et al. Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites[J]. Compos. Part B Eng,2015(80):73-83.
    [78]
    叶远静,袁小红.竹浆纤维的力学性能分析[J]. 中国纤检, 2011(17):82-84.
    [79]
    Wang H K, An X J, Li W J, et al. Variation of mechanical properties of single bamboo fibers (Dendrocalamus latiflorus Munro) with respect to age and location in culms[J].Holzforschung,2014, 68(3):291-298.
    [80]
    Kasmuric M. Engineering properties and impact resistance of kenaf and rice straw fibres reinforced concrete[J]. J. Kejuruter. 2018(1):71-76.
    [81]
    刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社, 2004.
    [82]
    刘嵘,杨淑敏,李晖,等.毛竹材导管分子的纹孔特征[J].南京林业大学学报(自然科学版),2017,41(6):163-168.
    [83]
    Londoño X, Camayo G C, Riaño N M, et al. Characterization of the anatomy of Guadua angustifolia (Poaceae:Bambusoideae) culms[J]. Bamboo Science and Culture, 2002, 16(1):18-31.
    [84]
    Carlquist S, Schneider E L. Origins and nature of vessels in monocotyledons. 13. Scanning electron microscopy studies of xylem in large grasses[J]. International Journal of Plant Sciences, 2011, 172(3):345-351.
    [85]
    Wimmer R, Lucas B N, Oliver W C, et al. Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique[J]. Wood Science and Technology,1997,31(2).
    [86]
    余雁,费本华,张波,等.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度[J].北京林业大学学报,2006(5):114-118.
    [87]
    Yu Y, Fei B, Zhang B, et al. Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation[J]. Wood and Fiber Science, 2007, 39(4):527-535.
    [88]
    Zou L, Jin H, Lu W Y, et al. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers[J]. Materials Science and Engineering:C, 2009, 29(4):1375-1379.
    [89]
    Ren D, Wang H, Yu Z, et al. Mechanical imaging of bamboo fiber cell walls and their composites by means of peak force quantitative nanomechanics (PQNM) technique[J]. Holzforschung, 2015, 69(8):975-984.
    [90]
    向娥琳.毛竹生长过程中细胞壁结构与性能的变化研究[D].雅安:四川农业大学,2018.
    [91]
    袁晶,方长华,张淑琴,等.竹材细胞壁水分研究进展[J].竹子学报,2020,39(1):24-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (714) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return